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Abstract—Parallel sparse LU factorization is a key compu-
tational kernel in the solution of a large-scale linear system
of equations. In this paper, we propose two strategies to
address some scalability issues of a factorization algorithm on
modern HPC systems. The first strategy is at the algorithmic-
level; we schedule independent tasks as soon as possible to
reduce the idle time and the critical path of the algorithm. We
demonstrate using thousands of cores that our new scheduling
strategy reduces the runtime by nearly three-fold from that of
a state-of-the-art pipelined factorization algorithm. The second
strategy is at both programming- and architecture-levels;
we incorporate light-weight OpenMP threads in each MPI
process to reduce both memory and time overheads of a pure
MPI implementation on manycore NUMA architectures. Using
this hybrid programming paradigm, we obtain a significant
reduction in memory usage while achieving a parallel efficiency
competitive with that of a pure MPI paradigm. As a result, in
comparison to a pure MPI paradigm which failed due to the
per-core memory constraint, the hybrid paradigm could utilize
more cores on each node and reduce the factorization time on
the same number of nodes. We show extensive performance
analysis of the new strategies using thousands of cores of the
two leading HPC systems, a Cray-XE6 and an IBM iDataPlex.

I. I NTRODUCTION

Parallel sparse LU factorization is widely used for solving
a large-scale linear system of equations in scientific and
engineering simulations. It can be used alone as a direct
solver, or it can be used as a preconditioner for an itera-
tive solver. However, implementing a parallel factorization
algorithm that is scalable in both time and memory is a
formidable task even for an expert in parallel computing.
This is because such an algorithm possesses many of the
fundamental challenges of parallel programming such as
highly irregular memory access patterns, large degree of task
and data dependencies, and imbalances in data distribution
and workload. This situation is exacerbated by the modern
HPC computers with heterogeneous manycore NUMA node
architectures. In this paper, we propose two strategies to ad-
dress some of the scalability issues of a parallel factorization
algorithm: the first is at the algorithmic-level; we schedule
independent tasks as soon as possible to reduce the idle
time and the critical path of the algorithm. The second is

at both programming- and architecture-levels; we employ a
hybrid programming paradigm to fully utilize the node-level
parallelism and memory of multicore NUMA architectures.

Our investigation focuses on a widely used open source
library SuperLU_DIST [22], which is a package for the
direct solution of a large-scale sparse general linear system
of equations on a distributed-memory cluster. It is a state-
of-the-art parallel direct solver capable of solving linear
systems with millions of unknowns from real-world appli-
cations [5]. The original target ofSuperLU_DIST was the
earlier generations of distributed-memory systems, where
each compute node had one or a small number of processor
cores with the uniform access to the physical memory.
On a modern HPC computer with the multicore NUMA
node architecture, the parallel scaling ofSuperLU_DIST
often stagnates on a few hundred of cores. Performance
profiling on 256 processor cores of the Cray-XE6 system
at NERSC revealed that about81% of the factorization time
was spent in MPIWait() and MPI Recv(). In other words,
for the81% of the time, the processor cores were performing
neither computation nor communication. To reduce this
idle time, in this paper, we propose an algorithmic-level
strategy to statically schedule independent tasks as soon as
possible. Our experimental results will demonstrate that the
parallel factorization with this new scheduling strategy can
obtain speedups of up to three over the current version of
SuperLU_DIST which is based on a pipelined factoriza-
tion [22].

The Cray-XE6 system at NERSC is a representative of
the new generation of a multicore NUMA architecture.
Each node of this system has two tweleve-core MagnyCours
processors and32GB of memory, averaging about1.3GB of
memory per core. Even though our aforementioned schedul-
ing strategy shortens the critical path of the algorithm, there
are two hindering factors forSuperLU_DIST to fully
utilize all the cores on each node. The first factor is the
per-core memory constraint. The currentSuperLU_DIST
is based on a pure MPI programming paradigm, where the
increase in the number of MPI processes often increases
the total memory requirement. This is because the total



communication volume of the algorithm often increases with
an increase in the number of MPI processes, and moreover,
each message may be internally duplicated in multiple
communication buffers by an MPI implementation. Finally,
SuperLU_DIST has certain amount of serial memory over-
head associated with an MPI process (see Section III). As a
result, to solve a large-scale linear system under the per-core
memory constraint,SuperLU_DIST can often use only a
limited number of cores on each node. On the future com-
puter with hundreds or thousands of cores per node, the per-
core memory is expected to be even smaller [6]. The second
factor is that on a multicore architecture, a message-passing
paradigm often has a greater time overhead than a shared-
memory paradigm. Therefore, even when the per-core mem-
ory constraint did not hinder the usage of all the cores on
each node, the factorization time may not scale. Hence, it is
imperative to abandon the pure MPI paradigm and resort to
a certain type of a hybrid programming paradigm that can
exploit the NUMA architecture. To demonstrate this, in the
second part of this paper, we incorporate a hybrid message-
passing (MPI) and shared-memory (OpenMP) program-
ming paradigm intoSuperLU_DIST. Using this hybrid
paradigm, we obtained a significant reduction in memory
usage while achieving a parallel efficiency competitive to
that of a pure MPI paradigm. As a result, in comparison
to a pure MPI paradigm, the hybrid paradigm could utilize
more cores on each node and reduce the factorization time
on the same number of nodes.

The rest of the paper is organized as follows. In Sec-
tions II and III, we first discuss related works and give
a brief overview ofSuperLU_DIST, respectively. Then,
in Section IV, we describe two techniques, look-ahead and
static scheduling, which are designed to reduce the idle time
during the parallel factorization. Next, in Section V, we
discuss our attempt to incorporate a hybrid MPI+OpenMP
programming paradigm intoSuperLU_DIST; The perfor-
mance results in Section VI will demonstrate that these
techniques can significantly improve the performance of
SuperLU_DIST on leading HPC computers based on
multicore NUMA node architectures. We conclude with final
remarks in Section VII.

II. RELATED WORK

There have been several scheduling strategies and hybrid
programming paradigms proposed for parallel sparse direct
solvers. In this section, we briefly describe those that are
most relevant to the ones proposed in this paper.

PasTiX [15] implements a parallel left-looking supernodal
factorization algorithm based on a hybrid MPI+pthread
programming paradigm [16]. It is capable of solving both
symmetric and unsymmetric systems, but it is most effec-
tive for solving a linear system with a symmetric positive
define (SPD) coefficient matrixA. It uses a combination
of a static and dynamic scheduling schemes based on both

elimination tree of |A|T + |A| and performance models
capturing both computation and communication [9]. An-
other relevant solver is WSMP [13], [14] which imple-
ments multifrontal factorization algorithm for solving SPD
and unsymmetric systems. It uses a hybrid MPI+pthreads
programming paradigm, and an assembly tree (elimination
tree) for scheduling. More recently, Hogg et al. used a
dynamic scheduler for a shared-memory supernodal algo-
rithm to factorize an SPD matrix [17]. The dependencies
among the tasks are represented by an implicit direct acyclic
graph (DAG), and the dependencies are resolved by keeping
track of the outstanding incoming edges at runtime.

In comparison to these previous works, we focus on
SuperLU_DIST which implements a supernodal right-
looking LU factorization algorithm for solving general
sparse linear systems. We first propose a static scheduling
strategy which uses one of the following two underlying
graphs to represents the task dependencies: the symmetri-
cally pruned DAG of the LU factors and the elimination
tree of |A|T + |A|. We show that our scheduling strategy
has very little runtime overhead on a large-scale multicore
clusters and can significantly reduce the factorization time.
We then study MPI+OpenMP hybrid paradigm to further
enhance the performance ofSuperLU_DIST.

III. OVERVIEW OF SUPERLU_DIST

To compute the solution of a sparse linear system,
SuperLU_DIST first computes an LU factorization of the
coefficient matrix, and then applies the forward and back-
ward substitutions. The LU factorization typically dominates
the solution time and is carried out in the following three
steps:

1) Matrix pre-processing: Before the numerical fac-
torization, the coefficient matrixA is first pre-processed to
achieve two goals. The first goal is to enhance the numerical
stability through static pivoting and matrix equilibration;
i.e, we compute a row permutation matrixPr, and a row
and column equilibration matricesDr and Dc. The se-
rial codeMC64 developed by Duff and Koster [7], which
implements a maximum weighted matching algorithm, is
employed. The algorithm computesPr to maximize the
product of the diagonal entries, and it also computesDr

andDc simultaneously so that the nonzero diagonal entries
of PrDrADc are one in their absolute values and all the off-
diagonal entries are less than or equal to one in their absolute
values. It has been shown that these pre-processing tech-
niques make the LU factorization numerically as stable as
that using partial pivoting for a wide range of problems [21].
Hence,SuperLU_DIST does not employ dynamic pivoting
(e.g., partial pivoting) during the numerical factorization.

The second goal of the pre-processing is to symmetrically
reorder the matrixPrDrADc such that its LU factors
remain sparse. This reduces the computational and storage
costs of the LU factorization. The reordering also helps



for k = 1, 2, . . . , ns do
1. Panel factorization

1.1 Column computation ofL(:, k).
a. if pid ∈ PC(k) then
b. compute the block columnL(k : ns, k)

(communicateU(k, k) amongPC(k))
c. sendL(k : ns, k) to required processes inPR(:)
d. else
e. receiveL(k : ns, k) if required
f. end if

1.2 Row computation ofU(k, :).
a. if pid ∈ PR(k) then
b. wait for U(k, k)
c. compute the block rowU(k, k + 1 : ns)
d. sendU(k, k + 1 : ns) to required processes inPC(:)
e. else
f. receiveU(k, k + 1 : ns) if required
g. end if

2. Outer-product updates of trailing submatrix.
a. for j = k + 1, k + 2, . . . , ns with U(k, j) 6= ∅ do
b. for i = k + 1, k + 2, . . . , ns with L(i, k) 6= ∅ do
c. if pid ∈ PR(i) ∩ PC(j)
d. A(i, j)← A(i, j) − L(i, k)U(k, j)
e. end if
f. end for
g. endfor

end for

Figure 1. Numerical factorization algorithm inSuperLU_DIST.

to reduce communication and improve the load balance of
numerical factorization [4]. Such a matrix ordering can be
computed, for example, using a nested dissection algorithm
of METIS [18] on the sparsity structure of|PrA|T + |PrA|.
For the remaining of this paper, we useA to denote the
matrix after the pre-processing is applied.

2) Symbolic factorization: The main benefit of static
pivoting over dynamic pivoting is to permit a priori determi-
nation of the sparsity structures of the LU factors before the
numerical factorization. An efficient symbolic factorization
algorithm [11], [21], [23] has been developed to determine
the sparsity structure, set up the required data structures,
and schedule all the communication and computation for the
numerical factorization. This often makesSuperLU_DIST
more scalable than the other solvers based on dynamic
pivoting [4].

3) Numerical factorization: The numerical factoriza-
tion is based on a fan-out (right-looking, outer-product)
supernodal LU factorization algorithm. A supernode is a set
of consecutive columns ofL with a dense triangular block
just below the diagonal and with the same nonzero structure
below the triangular block. To achieve good parallelism
and load balance, the MPI processes are assigned to the
supernodal blocks in a 2D cyclic layout. Figure 1 shows the
pseudocode of the factorization algorithm, wherens is the
number of supernodes,pid is the ID of this process, and
PC(k) and PR(k) are the groups of processes assigned to
the k-th supernodal column and thek-th supernodal row,

(a) Coefficient matrixA. (b) LU factors ofA.

Figure 2. Nonzero patterns of a matrixA and its LU factors.

respectively. Step 1 of the pseudocode corresponds to the
k-th panel factorization, where thek-th supernodal column
of L and thek-th supernodal row ofU are computed. At
Steps 1.1.c and 1.2.d, each process inPC(k) and PR(k)
sends its local blocks of the factors to the processes assigned
to the same row and column, respectively. Then, Step 2
updates the trailing submatrix using thek-th supernodal
column and row of the LU factors. To take advantage of
the sparsity ofA, the blockA(i, j) is updated only if both
blocks L(i, k) and U(k, j) are not empty. More detailed
description of the algorithm can be found in [22]

IV. N EW STATIC TASK SCHEDULING STRATEGY

The factorization algorithm in Figure 1 follows a se-
quential flow, i.e., the panel factorizations and the trailing-
submatrix updates are performed in sequence. For instance,
the MPI processes inPC(k) and PR(k) must wait for the
k-th diagonal block to be factorized before starting its panel
factorization. Moreover, all the processes must wait for the
panel factorization to complete before updating the trailing-
submatrix. On the other hand, at each step, multiple panels
may be ready to be factorized since they will not be updated
by the remaining panels due to the sparsity of the matrix.
Since several MPI processes may be idle waiting for thek-th
panel factorization to complete, these MPI processes can be
used to factorize the rest of the ready-to-be-factorized panels
and reduce the idle time. Furthermore, by factorizing and
sending these panels as soon as possible, their computation
and communication can overlap with other computation and
communication. In this section, we describe a new task
scheduling strategy to exploit these parallelism that are not
fully exploited in Figure 1.

A. Task dependency graph of sparse factorization

In this section, we introduce the task dependency graph
of sparse LU factorization, which is an important tool for
developing our scheduling algorithm. We will use the11×11
supernodal matrix shown in Figure 2 for illustration, where
each column and row of the matrix represent a supernodal
column and row, respectively. Now, consider Step 2 of
the factorization algorithm in Figure 1. We see that the
j-th column is updated by thek-th column only if the



blockU(k, j) is not empty. Similarly, thei-th row is updated
by thek-th row only if the blockL(i, k) is not empty. These
dependencies can be represented by a directed graph, where
thek-th node represents thek-th panel factorization, and for
eachk-th node, there is a directed edge(k, j) or (k, i) for
each non-empty blockU(k, j) or L(i, k), respectively. The
edge(k, j) (or (k, i)) represents the dependency that thek-th
column (or row) updates thej-th column (or thei-th row).
Figure 3 shows the dependency graph of the11×11 matrix
in Figure 2.

9 10 11

7 4 63

581

2

Figure 3. Dependency graph of LU factorization.

Unfortunately, it is usually not efficient to use the graph
in Figure 3 as a scheduling tool. This is because it contains
excessive amount of redundant information. For example,
there are an edge(7, 10) and a path7 → 9 → 10. Hence,
the edge(7, 10) is redundant.

A transitive reduction of a directed graph encompasses
all the dependency information with the minimum number
of edges [3]. However, its construction can be expensive.
One alternative is to use a so-called symmetrically pruned
graph [8]. To construct the pruned graph, we first identify the
smallest indexsk such thatU(k, sk) and L(sk, k) are the
first symmetrically matched non-empty blocks for eachk.
Then, we prune all the edges(k, j) for j > sk. The white
circles in the matrix of Figure 2(b) and the dashed edges
in the graph of Figure 3 represent the pruned edges. From
now on, we refer to this symmetrically pruned graph as the
reduced directed acyclic graph, or rDAG in short, of the LU
factors. A node of the rDAG without any incoming edges is
referred to as a source, while a node without any outgoing
edges is called a sink. A similar task graph was used in [12]
for a left-looking LU factorization algorithm, where only
the column dependency needed to be enforced. On the other
hand, ourk-th panel factorization task factorizes bothk-th
row and column, and our task graph must keep track of both
column and row dependencies.

For a symmetric matrixA, its rDAG is identical to its
transitive reduction. Furthermore, in this case, rDAG is a
tree, which is commonly referred to as an elimination tree, or
etree in short, and is used extensively to study the behavior
of sparse factorizations [24]. Just like rDAG, thek-th node
of the etree represents ourk-th panel factorization. There
is an edge(k, j) from the k-th node (a child) to thej-th
node (the parent) ifU(k, j) is the first non-empty block in
the k-th row of theU -factor. In the etree, a node without

(a) Symmetrized
matrix |A|T + |A|.

(b) LU factors of |A|T +
|A|.

Figure 4. Nonzero patterns of|A|T + |A| and its LU factors.

incoming edges is called a leaf, and the node without
outgoing edges is referred to as a root. Even for the LU
factorization of an unsymmetric matrixA, the etree of
the symmetrized matrix̂A = |A|T + |A| can be used to
capture both column and row dependencies of the panel
factorizations. However, this etree of the symmetrized matrix
can overestimate the true dependency of the panels in the
actual unsymmetric factorization. On the other hand, rDAG
contains some redundant edges, but it does not overestimate
the dependency unless numerical cancelation occurs during
the numerical factorization. Figures 4 and 5 respectively
show the sparsity structure and etree of the symmetrized
matrix Â of the11×11 matrixA in Figure 2. In comparison
to the rDAG in Figure 3, the etree in Figure 5 greatly
overestimates the dependency of the panels, where the
critical path of the etree is of length six while that of rDAG
is of length three.

11
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Figure 5. The etree of|A|T + |A|.

For scheduling the panel tasks, the final LU factors will be
correct as long as the following task-dependency invariant
is preserved: before thej-th panel factorization, all the
preceding updates to thej-th column and row must be
completed. In other words, before scheduling thej-th task,



0. Initialize look-ahead window
a. setnw (look-ahead window size)
b. n0 = 1 (index of the next column in window)

for k = 1, 2, . . . , ns do
1. Look-ahead the new columns in the window.

a. for j = n0, . . . , k + nw do
b. Panel factorizeA(j : ns, j) if possible

(communicateU(j, j) amongPC(j), and
isendL(j : ns, j) to PR(:))

c. end for
d. n0 = k + nw + 1

2. Look-ahead the rows.
a. for i = k + 1, . . . , k + nw do
b. FactorizeA(i, i : ns) if U(i, i) has arrived

(isendU(i, i : ns) to PC(:))
c. end for

3. Wait for U(k, k) and factorizeU(k, :) if needed.
4. Wait for U(k, k : ns) andL(k : ns, k).
5. Look-ahead factorization

a. for j = k + 1, . . . , k + nw with U(k, j) 6= 0 do
b. UpdateA(j : ns, j)
c. Panel factorizeA(j : ns, j) if possible

(communicateU(j, j) amongPC(j), and
isendL(j : ns, j) to PR(:))

d. end for
6. Update the remaining trailing matrix.
end for

Figure 6. Pseudocode of look-ahead factorization.

all the tasks corresponding to the nodes in the dependency
graph, which can reach thej-th node following the directed
paths, must be completed.

Since our panel factorization factorizes both column and
row, from now on, when we say that a column is factorized,
the corresponding row is also factorized. Our discussion
will focus on the etree, but will comment on how it can
be extended to the rDAG.

B. Look-ahead

Using the aforementioned task dependency graph, we can
schedule the panel factorization tasks in an order from the
leaves to the root of the etree or from the sources to the
sink of the rDAG. After thek-th panel updates thej-th
column and row, the corresponding edge(k, j) is removed
from the graph, potentially making thej-th node a leaf or
source. These leaf-nodes represent the columns and rows
that can be factorized. If we factorize all the leaf-nodes and
asynchronously send the results to the trailing submatrix
before updating the remaining submatrix, the idle time of
the processes may be minimized. Unfortunately, factorizing
and asynchronously sending all the leaf-nodes may require
infeasibly large memory to store the pending messages.
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Figure 7. Illustration of look-ahead factorization.

To reduce the memory requirement, we look-ahead only
a few next supernodal columns in a so-called look-ahead
window of sizenw and see if they can be factorized. Specif-
ically, if the j-th node in the look-ahead window becomes
a leaf after the removal of the edge(k, j); i.e., this is the
last update on thej-th column, then after thej-th column is
updated, we immediately factorize thej-th column and send
it to the trailing submatrix. This process is applied to all
the columns with the non-empty blockU(k, j) in the look-
ahead window (i.e.,j = k + 1, k + 2, . . . , k + nw). Finally,
the remaining columns outside the look-ahead window are
updated as before. Figure 6 shows the pseudocode of the
look-ahead algorithm, and Figure 7 illustrates the algorithm.

If nw > 1, then thek-th column is factorized before the
k-th step. This is because before the end of the(k − 1)-th
step, all the dependencies on thek-th column are removed,
and since thek-th column is in the look-ahead window at the
(k − 1)-th step, it is factorized. Hence, at the beginning of
thek-th step, if the blockU(k, j) is not empty, then thek-th
column can be used right away to update thej-th column.
Note that at the beginning of thek-th step, we first check
if the (k +nw)-th column, which was not in the look-ahead
window during the(k − 1)-th step, is already a leaf.

We now describe how we look-ahead supernodal rows.
Let us assume that thej-th node in the look-ahead window
becomes a leaf after the edge(k, j) is removed. Hence,
the j-th column is factorized right after being updated with
the k-th panel. On the other hand, thej-th row cannot
be factorized, yet, if a blockU(j, ℓ) for ℓ > j in the
j-th row needs to be updated. This is why the rows in
the look-ahead window are factorized separately from the
columns. Specifically, when thej-th node becomes a leaf,
the corresponding diagonal process (e.g., process3 on the4-
th diagonal block in Figure 1) first factorizes its supernodal
blocks in thej-column, and then sends the diagonal block
to the processes in the same column (e.g., process0). While



the diagonal process performs its panel factorization, therest
of the processes in thej-th column are blocked. As soon as
these processes in the column receive the diagonal block,
they perform the panel factorization of their local blocks in
the j-th column and send the results to the processes in
the same row (e.g., process3 sends to processes5, and
process0 sends to process2. Note that the results are
sent only to the processes that require them; i.e., to the
processes in the columns with the non-empty blocks in the
j-th row). On the other hand, the panel factorization of the
rows is implemented using non-blocking communication,
and the processes perform the panel factorization of the row
only after all the trailing updates with thek-th panel are
completed and when the diagonal block is received (Step2
of Figure 6). Hence, the process blocks only at thek-th step
if the k-th diagonal blockU(k, k) has not been received, yet
(Step3).

This look-ahead technique has been used for dense matrix
factorization [19], where the speedup of about1.7 was
reported on a shared-memory computer with two1.8GHz
dual-core AMD opteron 265 processors.SuperLU_DIST
already implements a pipelining mechanism, where the next
(k+1)-th column is factorized before the remaining columns
are updated. This is equivalent to look-ahead with the win-
dow size of one. In [22], pipelining reduced the factorization
time by 10% to 40% on64 processors of a Cray-T3E system.
Here, we generalize this idea to an arbitrary look-ahead
window size, which allows higher degree of parallelism and
overlapping of communication and computation.

C. Bottom-up topological ordering

The look-ahead mechanism in Section IV-B pro-
vides a great potential to reduce some serialization
in SuperLU_DIST. However, even after the integration
of look-ahead, we observed that on 256 cores of Cray-
XE6, about76% of the numerical factorization time was
still spent at the synchronization points (e.g., Steps 3 and
4 of Figure 6). This is because even though many of the
panel factorization tasks were leaves, they were outside the
look-ahead window. Since these tasks enter the look-ahead
window from the first to thens-th task in the sequence,
the ordering of these tasks has a significant impact on the
performance of look-ahead. We next propose an ordering
of the supernodal columns to increase the potential of the
tasks within the look-ahead window being leaves. Our main
objective is to find an ordering of all these tasks as given
in the outer loop overk in Figure 1 so that the critical
path of the algorithm is shortened. Notice that this loop
transformation is possible only for a sparse matrixA since
its task dependency graph is not a complete graph; whereas
the dependency graph of a dense matrix is complete.

Let us first discuss howSuperLU_DIST currently or-
ders or schedules these tasks. The symbolic factorization
algorithm permutes the columns of the coefficient matrix ac-
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Figure 8. Static scheduling based on etree.

cording to a postordering of the etree, in which the children
are numbered before their parents and the nodes within any
subtree are numbered consecutively (see Figure 8(a)).1 This
ordering is motivated to obtain larger supernodes without
changing the sparsity structure of the LU factors. The reason
this ordering may increase the sizes of the supernodes is
the following. The sparsity structure of the fill generated
in the j-th column is contained in the union of that of
the j-th column ofA and those of the columns of theL-
factor, which correspond to the descendants of thej-th node
in the etree [10]. Thus, after the matrixA is permuted in
the postordering, the nodes corresponding to the adjacent
columns are likely to have a large number of same descen-
dants and are expected to have similar sparsity structures
in the L-factor. As our symbolic factorization subroutine
locates a supernodal column in the postorder, it sets up the
data structure to store the column. Hence, these supernodal
columns are stored at the contiguous memory locations in
the postorder. Then, during the numerical factorization, the
supernodal columns are factorized in the same postorder
since this improves data locality of computing the LU
factors. Unfortunately, this postordering limits the number of
supernodal columns that can be factorized in the look-ahead
window. This is because the look-ahead window contains
only the nodes in a small subtree of the etree, while missing
the other leaf-nodes in the other parts of the tree, which are
ready to be factorized.

To mitigate this problem, we use a static scheduling
scheme based on a bottom-up topological ordering of the
etree, in the spirit of breadth-first search (see Figure 8(b)).
This ordering can be computed using a FIFO queue. First, all
the initial leaf-nodes in the etree are pushed into the queue
(the nodes1 through5 in Figure 8(b)). Then, the first node
in the queue is popped to be scheduled, and if the removal

1The nested dissection ordering is one example of postordering.



of this node generates a new leaf-node in the etree, then the
new leaf-node is pushed into the end of the queue. If we
use a priority-queue instead of a FIFO queue, then several
options exist to schedule the leaf-nodes in the queue. In our
implementation, to shorten the critical path of the algorithm,
we try to schedule the leaf-node that is furthest away from
the root first. This is done by ordering the initial leaf-nodes
in the descending order of their distance from the root. Then,
the new leaf-nodes are pushed into the FIFO queue as the
nodes in the queue are processed (see Figure 8(b)).

For an unsymmetric matrix, we can either use the etree
of the symmetrized matrix|AT | + |A| or use the rDAG by
scheduling all the source-nodes of the rDAG first. With the
combination of the static scheduling and look-ahead, only
about36% of the numerical factorization time is now spent
at the synchronization points on the256 cores of Cray-
XE6. This scheduling strategy will be incorporated into the
upcomming version3.0 of SuperLU_DIST.

V. HYBRID PROGRAMMING

With the advent of multicore architecture, we are seeing
an increasing number of cores per node and a simpler core
design. In the near future, the number of cores per node is
expected to be in the order of hundreds or thousands [6]. On
the other hand, the size of the memory on each compute node
is expected to be about the same or smaller due to power
constraint. Using a pure MPI programming paradigm is not
appropriate for such light-weight core designs, especially
on NUMA architectures. For instance, the small amount of
per-core memory can become a limiting factor for running
one MPI process per core since each MPI process adds
certain amount of communication buffer overhead. Even
if we have sufficient memory to pack hundreds of MPI
processes on each node, the network adapter on the node
could become a serious bottleneck when many of these
tasks communicate off-node. In order to effectively utilize
the node-level core resources, the on-node parallel execution
model must incorporate fine-grained data parallelism to
reduce the message passing overhead. Hence, it becomes
imperative to investigate new programming paradigms other
than a pure MPI paradigm. In this section, we describe how
we integrated a hybrid message-passing and shared-memory
programming paradigm intoSuperLU_DIST to adapt to
the modern multicore cluster.

The computational cost of numerical factorization is typ-
ically dominated by the trailing submatrix update, where
each process updates several independent blocks of the
trailing submatrix at each step. We incorporated light-weight
OpenMP threads in each MPI process to update disjoint
sets of these independent blocks in parallel. We chose to
use OpenMP over other threading or data parallel languages
because it is production-ready, easily accessible, and widely
supported.
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Figure 9. Mapping of threads to supernodal blocks. The light-blue blocks
represents the non-empty blocks in the current panel. Four MPI processes
are assigned to blocks in a2×2 grid, where the numbers inside the blocks
indicate the process ID. Each MPI process generates four threads, where
the blocks in blue, green, red and yellow are assigned to the first, second,
third and fourth thread of the process1, respectively. Only the active blocks
are assigned to threads.

There are several options as to how to assign the indepen-
dent blocks to the threads. For instance, a process can assign
its local supernodal columns of the trailing submatrix to the
threads in a 1D block fashion; i.e., thet-th thread updates
(t − 1) · h-th to (t · h − 1)-th columns, whereh = nc

nt

, nt

is the number of threads, andnc is the number supernodal
columns assigned to this process (see Figure 9(a)). Since
these columns are contiguous in memory, each thread can
access the columns without large stride. However, with this
layout, the number of threads is limited by the number of
columns. Another approach is to assign the blocks in a
2D cyclic fashion; namely the(i, j)-th block is assigned
to (br · tc + bc)-th thread, where the threads are organized
into a tr × tc grid (i.e., nt = tr · tc), br = mod(i, tr), and
bc = mod(j, tc) (see Figure 9(b)). Since the blocks assigned
to a thread are not contiguous in memory, accessing these
blocks incurs some overhead. However, this offers more
parallelism than the 1D layout does. We chose to use the
1D block layout if the number of columns is greater than
the number of threads. Otherwise, we use the 2D cyclic
layout if the number of blocks is greater than the number
of threads.2 Finally, we use a single thread to update the
trailing submatrix if there are not enough blocks.

This hybrid programming paradigm obtained significant
reduction in memory usage while achieving the same level
of parallel efficiency as the pure MPI paradigm. As a result,
in comparison to the pure MPI paradigm which failed due to
the per-core memory constraint, this hybrid paradigm could

2In our experiments, the thread grid is as close to a square grid as
possible.



Name Application Source Type Symm. n nnz

n
fill-ratio

tdr455k Accelerator Omega3P real Yes 2, 738, 556 41 12.3
matrix211 Fusion M3D-C1 real No 801, 378 161 9.9
cc linear2 Fusion NIMROD complex No 259, 203 109 7.1
ibm matick Circuit simulation IBM complex No 16, 019 4, 005 1.0
cage13 DNA electrophoresis UF collection real No 445, 315 17 608.5

Table I
TEST MATRIX PROPERTIES.

use more cores on each node and reduce the factorization
time on the same number of nodes.

VI. PERFORMANCE RESULTS

In this section, we study the performance of the techniques
proposed in this paper. We first describe our testbeds, test
matrices, and experimental setups in Sections VI-A, VI-B,
VI-C, respectively. Then, we present the effects of static
scheduling and hybrid programming on the performance of
SuperLU_DIST in Sections VI-D and VI-E, respectively.

A. Experimental testbeds

We conducted our experiments to examine the perfor-
mance of the proposed techniques on two leading HPC sys-
tems at the National Energy Research Scientific Computing
Center (NERSC). In this section, we briefly describe our
experimental testbeds.

Cray-XE6 (Hopper): Hopper is a Cray-XE6 system and
placed number eight on the latest Top500 Supercomputer
list (June 2011). It consists of153, 216 compute cores
and 217TB of total memory, and has a peak performance
of 1.28 petaflops/sec. Each compute node consists of two
twelve-core AMD Magny-Cours2.1GHz processors, giving
each node24 cores. Each Magny-Cours has two six-core
Bulldozer CPUs connected by interconnect in one package,
where each CPU has its own local memory controllers.
Hence, it provides a NUMA architecture within each pack-
age. Each compute node has32GB of memory with about
1.3GB of memory per core when all the cores are used on
the node. These compute nodes are connected by the Cray
Gemini interconnect that forms 3D torus.

IBM iDataPlex (Carver): Carver is an IBM iDataPlex
system with3, 520 processor cores. The compute node used
for our experiments has two quad-core intel Xeon X5550
Nehalem2.7GHz processors, and24GB of memory. These
nodes on Carver do not have disk, and about4GB of the
memory is used to store the system files. Hence, each core
has about2.5GB of memory when the node is fully packed.
For high-performance message passing on the interconnect
between the nodes, 4X QDR InfiniBand technology, with
32Gb/sec of point-to-point bandwidth, is used.

More information about our testbeds can be found at
https://www.nersc.gov/systems.

B. Test matrices

The applications of our main interests are the numerical
simulations (Omega3P) to model particle accelerator cavi-
ties [2] and those (M3D-C1 and NIMROD) to model fusion
energy devices [1]. The accelerator simulation involves non-
linear eigenvalue problems for solving discretized Maxwell
equations, where the solutions of the highly-indefinite linear
systems are needed for the shift-invert operations. When the
shift is close to an actual eigenvalue, these linear systems
are close to singular and extremely difficult to solve using
a preconditioned iterative method. The numerical simula-
tion of the fusion energy devices requires the solution of
linear systems of the discretized extended MHD equations,
which are unsymmetric and indefinite. Besides these, we
have selected two matrices from the other disciplines; one
from a circuit simulation at IBM, and the other for DNA
electrophoresis from the University of Florida sparse matrix
collection. Table I shows the properties of our test matrices.

C. Experimental setup

For all of our experiments in this paper, we used the
default setups ofSuperLU_DIST; i.e., we usedMC64
for static pivoting and equilibration to enhance numerical
stability, a serial nested dissection algorithm of METIS to
preserve the sparsity of the LU factors, and serial symbolic
factorization to setup the data structures required for the
numerical factorization. These serial matrix pre-processing
and symbolic factorization algorithms require each MPI
process to store the global coefficient matrix. It is possible
to use parallel pre-processing algorithms and the parallel
symbolic factorization [11] by replacingMC64 and METIS
with a simple parallel matrix equilibration [22] and a parallel
nested dissection of ParMETIS [18] or PT-SCOTCH [20],
respectively. However, sinceSuperLU_DIST does not per-
form any dynamic pivoting,MC64 may be necessary for
ill-conditioned problems. Furthermore, the matrix orderings
returned by ParMETIS or PT-SCOTCH would be different
using different numbers of processes, and this would make it
difficult to compare the parallel performance of the proposed
techniques on different numbers of processes.

D. Performance results of static scheduling

Figure 10 shows the effects of the window sizenw on
the performance of static scheduling on the Cray-XE6. In
the figure, the bars with the window size of one show
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Figure 10. Effects of window size on performance of static scheduling.

the numerical factorization times of the latest version 2.5
of SuperLU_DIST, while those with the window size
of greater than one deploy the new look-ahead and static
scheduling strategies in the upcoming release version 3.0.
We see that the integration of look-ahead and static schedul-
ing significantly reduced the factorization time by reducing
the synchronization time and overlapping communication
with computation. The improvement stagnated with the
window size greater than10.

Table II shows the performance of the static scheduling for
all the test matrices with the fixed window size ofnw = 10.
Specifically, we show the performance of look-ahead alone
(“look-ahead” in the table) and the combination of look-
ahead with static scheduling (“schedule”), and compare it
with that of version2.5 (“pipeline”). In the table, we clearly
see that with a large number of processes, the factorization
time was dominated by the communication time, which
is shown in parentheses.3 Since the communication time
increased with the number of MPI processes, the pipelined
factorization did not scale beyond hundreds of processes.
Even though the look-ahead alone was not effective, when it
was combined with the static scheduling, the communication
time was significantly reduced, obtaining the speedups of up
to 2.9 over the pipelined factorization time. Figure 11 shows
these results visually fortdr455k andmatrix211.

For cage13, the factorization was slower using the static
scheduling on a small number of cores (e.g.,8 or 32 cores).
This is mainly due to the overhead associated with the static
scheduling such as irregular access to the panels and poor
data locality. However, as the number of cores increases, the
communication started to dominate the factorization time,
and the static scheduling was able to obtain significant
speedups of up to about2.6.

We also see that our scheduling strategy could not ob-
tain significant speedups foribm matick. This is because
ibm matick and its LU factors are much denser than the
other test matrices. Hence, its task dependency graph is

3Integrated Performance Monitoring (IPM) was used to measure the
times spent on MPI communication.
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Figure 11. Factorization (MPI communication) time in seconds, with v2.5
and v3.0 on Hopper.

closer to a complete graph. This provides only a small
potential of reducing the idle time by reordering the matrix.

In Table III, we show the experimental results on Carver.
The maximum number of nodes that a user can obtain on
Carver is64, where each node has eight cores. Hence, in
order to use512 cores, we must use all of the eight cores
on each of the64 nodes. Unfortunately, this did not provide
enough memory to solve some of the linear systems on512
cores. However, similar to the results on Hopper, even on
hundreds of cores, significant speedups was obtained using
the static scheduling. In Section VI-E, we study the memory
usage in more details.

Number of cores
version 8 32 128 512

results for tdr455k
cores/node 2 4 4 8
pipeline 195.9 65.7 39.4 OOM
schdule 172.3 47.0 17.8 OOM
results for matrix211
cores/node 8 8 8 8
pipeline 46.9 14.7 10.1 14.4
schedule 31.8 7.8 5.7 13.4
results for cclinear2
cores/node 8 8 8 8
pipeline 27.4 8.5 5.7 6.3
schdule 18.4 4.9 2.5 2.7
results for ibmmatick
cores/node 4 4 4 8
pipeline 27.0 7.12 2.1 OOM
schdule 25.1 6.77 2.1 OOM
results for cage13
cores/node 1 2 2 8
pipeline 5104.6 1322.3 335.4 OOM
schdule 7041.2 1316.8 320.2 OOM

Table III
FACTORIZATION TIME IN SECONDS WITH V2.5 AND V 3.0 ON CARVER.

E. Performance results of hybrid programming

Table IV shows the results of the hybrid programming
paradigm, where we used different numbers of MPI pro-
cesses and OpenMP threads on16 compute nodes of Hopper.



Number of cores
version 8 32 128 512 2048

results for tdr455k
cores/node 1 8 8 8 4
pipeline 250.3 (44.8) 95.0 (42.8) 49.8 (32.2) 44.7 (41.5) 81.0 (80.1)
look-ahead(10) 248.7 (48.0) 97.9 (45.1) 45.9 (31.5) 43.5 (34.1) 67.1 (42.8)
schdule 225.5 (19.4) 70.7 (16.4) 23.7 (9.3) 17.5 (12.2) 37.7 (31.3)
results for matrix211
cores/node 8 24 24 24 8
pepeline 46.9 (13.8) 17.2 (9.3) 10.3 (8.4) 12.8 (12.4) 17.2 (17.1)
look-ahead(10) 48.1 (15.7) 18.6 (10.6) 10.3 (8.1) 10.1 (8.5) 14.9 (10.4)
schedule 41.8 (8.2) 12.7 (4.4) 5.2 (3.1) 4.9 (4.1) 7.6 (6.4)
results for cclinear2
cores/node 8 24 24 24 8
pipeline 30.9 (29.6) 12.3 (7.2) 7.6 (6.5) 6.8 (6.6) 7.9 (7.9)
schedule 24.3 (17.8) 7.5 (2.3) 3.6 (2.4) 2.3 (2.0) 2.7 (2.5)
results for ibmmatick
cores/node 8 8 8 8 4
pipeline 46.9 (12.6) 14.9 (4.8) 7.2 (5.5) 5.4 (5.0) 5.2 (5.1)
schedule 46.4 (13.3) 12.5 (3.1) 7.0 (5.0) 5.0 (4.6) 4.8 (4.6)
results for cage13
cores/node 1 4 4 4 4
pipeline 6798.9 (425.8) 1986.4 (287.5) 481.4 (134.9) 139.5 (61.6) 124.5 (107.7)
schedule 8412.5 (600.5) 2085.6 (241.7) 438.6 (86.8) 116.0 (34.6) 47.5 (21.5)

Table II
FACTORIZATION (MPI COMMUNICATION) IN SECONDS, WITH V 2.5 AND V 3.0 ON HOPPER.

The look-ahead window size is fixed atnw = 10. In the ta-
ble, “time (s)” is the numerical factorization time in seconds.
In addition, next to “mem (GB),” we show the total memory
allocated bySuperLU_DIST for the data structures storing
the distributed LU factors and for the communication buffers
used during the numerical factorization in Gigabytes. This
value does not change with the increase in the number of
MPI processes or OpenMP threads since the serial pre-
processing is used. Finally, under “mem (GB),” we show
the three memory statisticsmem, mem1 + mem2, where
mem is the total high watermark of the memory allocated
by SuperLU_DIST, mem1 is the total memory usage
including the system memory before the factorization, and
mem1 + mem2 is the usage after the factorization.4

First, we clearly see that due to the serial algorithms used
by the default setups,mem increased almost proportionally
to the number of MPI processes. We also see thatmem1 +
mem2 was significantly greater thanmem. This is mainly
because on Hopper, all the libraries are statically linked by
default and this leads to a large executable file. The hybrid
programming paradigm reduces these memory bottlenecks
using OpenMP threads in place of MPI processes. As a
result, the hybrid program could effectively use more cores
on each node, whereas the pure MPI program failed due to
the per-core memory constraint.5

Furthermore, we see that the best time for each matrix
with the fixed node count of16 was always obtained by the

4 The memory usage was obtained by reading the system file
/proc/(pid)/status.

5The program may fail at a serial bottleneck before the factorization
(e.g., serial equilibration or symbolic factorization).

hybrid paradigm. For example, the best time of the hybrid
paradigm oncage13was about2.2 times faster than that
of the pure MPI paradigm (cf.,845.3 seconds with64 × 1
while 377.2 seconds with64 × 4). This clearly shows that
the hybrid paradigm was able to better utilize the resources
available on the compute nodes.

Finally, when the same number of cores is used, the
factorization was faster using the pure MPI paradigm on a
small number of cores. However, on a large number of cores,
the hybrid paradigm could avoid the expensive message
passing among the cores on the same NUMA node and
obtained a small speedup over the pure MPI paradigm (e.g.,
3.9 seconds with128×2 while 5.0 seconds with256×1 for
matrix211). Figure 12 shows these timing results visually
for tdr455k andmatrix211.
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Figure 12. Results of hybrid programming using 16 nodes of Hopper.

Table V shows the results of the hybrid programming
on Carver. The behavior of the codes was similar to those



tdr455k matrix211 cage13
MPI×Thread time (s) mem (GB);23.3 time (s) mem (GB);5.4 time (s) mem (GB);43.3

16 × 1 115.6 45.4, 75.2 + 0.8 19.2 15.4, 56.3 + 0.5 3943.7 106.3, 91.5 + 1.1
32 × 1 61.5 81.9, 128.0 + 1.1 10.5 30.7, 106.6 + 1.1 1743.3 169.5, 141.7 + 1.8
16 × 2 73.1 45.4, 75.2 + 1.5 12.9 15.4, 56.3 + 1.1 2221.0 106.3, 91.5 + 1.8
64 × 1 34.9 163.8, 232.0 + 2.0 6.4 61.5, 207.3 + 2.9 845.3 294.3, 243.7 + 3.3
32 × 2 41.7 81.9, 128.1 + 2.3 7.6 30.7, 106.6 + 2.4 1014.1 169.5, 141.7 + 3.1
16 × 4 51.2 45.4, 75.2 + 2.8 10.2 15.4, 56.3 + 2.4 1297.1 106.3, 91.5 + 3.1

128 × 1 22.0 327.6, 441.1 + 6.9 4.1 122.9, 410.5 + 5.0 −− OOM, OOM
64 × 2 25.8 163.8, 232.0 + 4.6 5.1 61.5, 207.3 + 5.5 567.2 294.3, 243.7 + 5.8
32 × 4 31.5 81.9, 128.1 + 4.8 7.0 30.7, 106.6 + 4.9 750.0 169.5, 141.7 + 5.7
16 × 8 41.7 45.4, 75.2 + 5.3 9.1 15.4, 56.3 + 5.0 905.9 106.3, 91.5 + 5.6

256 × 1 −− OOM, OOM 5.0 245.9, 830.9 + 8.2 −− OOM, OOM
128 × 2 18.5 327.6, 441.1 + 12.0 3.9 122.9, 410.5 + 10.1 −− OOM, OOM
64 × 4 21.3 163.8, 232.0 + 9.7 4.8 61.5, 207.3 + 4.6 377.2 169.5, 243.7 + 10.9

Table IV
RESULTS OF HYBRID PROGRAMMING USING16 NODES OFHOPPER.

on Hopper. The only significant difference was that much
less system memory was required on Carver. This is mainly
because on Carver, some of the libraries are dynamically
linked, and the executable files is usually much smaller than
that on Hopper.

VII. C ONCLUSION

We studied two strategies to enhance the parallel perfor-
mance ofSuperLU_DIST on modern multicore architec-
tures. The first strategy schedules independent tasks as soon
as possible to shorten the critical path. The experimental
results demonstrated that the parallel factorization withthis
new scheduling strategy is nearly three times faster than
the previous pipelined factorization. The second strategy
uses the hybrid programming to overcome per-core memory
constraint and fully utilize the node-level parallelism on
a NUMA manycore architecture. We incorporated light-
weight OpenMP threads in each MPI process to update
independent blocks of the trailing submatrix. This hybrid
programming could reduce the memory usage significantly,
while achieving the same level of parallel efficiency as a
pure MPI code. As a result, in comparison to the pure MPI
paradigm, the hybrid paradigm utilized more cores on each
node and reduced the factorization time on the same number
of nodes.

In order for our static scheduling scheme to capture the
different computational costs of the panel factorization tasks,
we have assigned weights on the edges in our task depen-
dency graphs (e.g., based on the size of the diagonal block).
Furthermore, the MPI processes are currently assigned to
supernodal blocks before the static scheduling. It might
be beneficial to consider the process-assignment during the
static scheduling such that the leaf-nodes are scheduled in
a round-robin fashion according to the processes assigned
to them. The motivation was to allow multiple processes to
factorize different leaf-nodes in parallel. We have investi-
gated these approaches, but currently, we have not observed

significant improvements over the strategies described in
Section IV.

We currently use the hybrid programming paradigm only
for the trailing submatrix update. We are considering how
we can apply the hybrid paradigm for the panel factorization
and reduce the message-passing overhead.

Finally, we plan to extend our memory profiling studies
of the hybrid programming paradigm. For instance, we have
not measured the amount of memory internally allocated
by MPI during the numerical factorization. These measure-
ments may show more significant advantages of the hybrid
programming paradigm over the pure MPI paradigm.
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